Characteristics of Precipitating Convective Systems in the South Asian Monsoon

نویسندگان

  • ULRIKE ROMATSCHKE
  • ROBERT A. HOUZE
چکیده

Eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data show how convective systems of different types contribute to precipitation of the South Asian monsoon. The main factor determining the amount of precipitation coming from a specific system is its horizontal size. Convective intensity and/or number of embedded convective cells further enhance its precipitation production. The precipitation of the monsoon is concentrated in three mountainous regions: the Himalayas and coastal ranges of western India and Myanmar. Along the western Himalayas, precipitation falls mainly from small, but highly convective systems. Farther east along the foothills, systems are more stratiform. These small and medium systems form during the day, as the monsoon flow is forced upslope. Nighttime cooling leads to downslope flow and triggers medium-sized systems at lower elevations. At the mountainous western coasts of India and Myanmar, small and medium systems are present throughout the day, as an orographic response to the southwesterly flow, with a slight superimposed diurnal cycle. Medium systems are favored over the eastern parts of the Arabian Sea and large systems are favored over the Bay of Bengal when an enhanced midlevel cyclonic circulation occurs over the northern parts of these regions. The systems forming upstream of coastal mountains over the Bay of Bengal are larger than those over the Arabian Sea, probably because of the moister conditions over the bay. The large systems over the bay exhibit a pronounced diurnal cycle, with systems forming near midnight and maximizing in midday.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat and Moisture Sources and Sinks of Asian Monsoon Precipitating Systems

The structure and properties of , heat and moisture sources and sinks of the Asian monsoon are reviewed. Results from the First GARP Global Experiment (FGGE) have yielded important information on these sources, ranging from the planetary scale down to the scale of individual convective systems. The emerging picture is one of a complex spatial and temporal distribution of heat sources over the e...

متن کامل

Regional, Seasonal, and Diurnal Variations of Extreme Convection in the South Asian Region

Temporal and spatial variations of convection in South Asia are analyzed using eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data and NCEP reanalysis fields. To identify the most extreme convective features, three types of radar echo structures are defined: deep convective cores (contiguous 3D convective echo $40 dBZ extending $10 km in height) represent the...

متن کامل

Effects of Orography and Surface Heat Fluxes on the South Asian Summer Monsoon

A high-resolution (40 km horizontal) global model is used to examine controls on the South Asian summer monsoon by orography and surface heat fluxes. In a series of integrations with altered topography and reduced surface heat fluxes, monsoon strength, as indicated by a vertical wind shear index, is highly correlated with the amplitude of the maximum boundary layer equivalent potential temperat...

متن کامل

A review of recent progress on Tibet’s role in the South Asian monsoon

The Tibetan Plateau exerts a profound influence on winds in boreal winter primarily through mechanical means, blocking flow to create waves in the jet stream that extend around Earth’s full circumference (e.g. Held et al., 2002). In contrast, this plateau was thought to influence boreal summer winds primarily through its thermal effects, providing a heat source over 4 km high and 2,000 km wide ...

متن کامل

Journal of the Meteorological Society of Japan, Vol. 82, No. 6, pp. 1545--1564, 2004

Convective variability at submonthly timescales (7–20 days) over the Tibetan Plateau and the associated large-scale atmospheric circulation and convection were examined over regions affected by the Asian Monsoon. The mature phase of the Asian summer monsoon (July–August) was analyzed for those years (1986, 93, 98) in which convective variability on timescales of 14 days was notable over the Tib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011